Choices and Intervals

PASCAL MAILLARD (Weizmann Institute of Science)
AofA, Paris, June 17, 2014
joint work with

Elliot Paquette
(Weizmann Institute of Science)

Related models

Random structures formed by adding objects one after the other according to some random rule. Examples:
(1) balls-and-bins model: n bins, place balls one after the other into bins, for each ball choose bin uniformly at random (maybe with size-biasing)
(2) random graph growth: n vertices, add (uniformly chosen) edges one after the other.
(3) interval fragmentation: unit interval $[0,1]$, add uniformly chosen points one after the other \rightarrow fragmentation of the unit interval.
Extensive literature on these models.

Power of choices

Aim: Changing behaviour of model by applying a different rule when adding objects
(1) balls-and-bins model: n bins, at each step choose two bins uniformly at random and place ball into bin with fewer/more balls. Azar, Broder, Karlin, Upfal '99; D'Souza, Krapivsky, Moore '07; Malyshkin, Paquette '13
(2) random graph growth: n vertices, at each step uniformly sample two possible edges to add, choose the one that (say) minimizes the product of the sizes of the components of its endvertices. Achlioptas, D'Souza, Spencer '09; Riordan, Warnke '11+'12
(3) interval fragmentation: unit interval $[0,1]$, at each step, uniformly sample two possible points to add, choose the one that falls into the larger/smaller fragment determined by the previous points. \rightarrow this talk

Balls-and-bins model

n bins, place n balls one after the other into bins.

- Model A: For each ball, choose bin uniformly at random.
- Model B: For each ball, choose two bins uniformly at random and place ball into bin with more balls.
- Model C: For each ball, choose two bins uniformly at random and place ball into bin with fewer balls.
How many balls in bin with largest number of balls?
- Model A:
- Model B:
- Model C:

Balls-and-bins model

n bins, place n balls one after the other into bins.

- Model A: For each ball, choose bin uniformly at random.
- Model B: For each ball, choose two bins uniformly at random and place ball into bin with more balls.
- Model C: For each ball, choose two bins uniformly at random and place ball into bin with fewer balls.
How many balls in bin with largest number of balls?
- Model A: $\approx \log n / \log \log n$
- Model B:
- Model C:

Balls-and-bins model

n bins, place n balls one after the other into bins.

- Model A: For each ball, choose bin uniformly at random.
- Model B: For each ball, choose two bins uniformly at random and place ball into bin with more balls.
- Model C: For each ball, choose two bins uniformly at random and place ball into bin with fewer balls.
How many balls in bin with largest number of balls?
- Model A: $\approx \log n / \log \log n$
- Model B: $\approx \log n / \log \log n$
- Model C:

Balls-and-bins model

n bins, place n balls one after the other into bins.

- Model A: For each ball, choose bin uniformly at random.
- Model B: For each ball, choose two bins uniformly at random and place ball into bin with more balls.
- Model C: For each ball, choose two bins uniformly at random and place ball into bin with fewer balls.
How many balls in bin with largest number of balls?
- Model A: $\approx \log n / \log \log n$
- Model B: $\approx \log n / \log \log n$
- Model C: $O(\log \log n)$

Ψ-process: definition

X : random variable on $[0,1], \Psi(x)=P(X \leq x)$.

Ψ-process: definition

X : random variable on $[0,1], \Psi(x)=P(X \leq x)$.
(1) Step 1: empty unit interval $[0,1]$

Ψ-process: definition

X : random variable on $[0,1], \Psi(x)=P(X \leq x)$.
(1) Step 1: empty unit interval $[0,1]$
(2) Step n : $n-1$ points in interval, splitting it into n fragments

ψ-process: definition

X : random variable on $[0,1], \Psi(x)=P(X \leq x)$.
(1) Step 1: empty unit interval $[0,1]$
(2) Step n : $n-1$ points in interval, splitting it into n fragments
(3) Step $n+1$:

- Order intervals/fragments according to length

Ψ-process: definition

X : random variable on $[0,1], \Psi(x)=P(X \leq x)$.
(1) Step 1: empty unit interval $[0,1]$
(2) Step n : $n-1$ points in interval, splitting it into n fragments
(3) Step $n+1$:

- Order intervals/fragments according to length
- Choose an interval according to (copy of) random variable X

Ψ-process: definition

X : random variable on $[0,1], \Psi(x)=P(X \leq x)$.
(1) Step 1: empty unit interval $[0,1]$
(2) Step n : $n-1$ points in interval, splitting it into n fragments
(3) Step $n+1$:

- Order intervals/fragments according to length
- Choose an interval according to (copy of) random variable X
- Split this interval at a uniformly chosen point.

Ψ-process: definition

X : random variable on $[0,1], \Psi(x)=P(X \leq x)$.
(1) Step 1: empty unit interval $[0,1]$
(2) Step n : $n-1$ points in interval, splitting it into n fragments
(3) Step $n+1$:

- Order intervals/fragments according to length
- Choose an interval according to (copy of) random variable X
- Split this interval at a uniformly chosen point.

Ψ-process: examples

X : random variable on $[0,1], \Psi(x)=P(X \leq x)$.

- $\Psi(x)=x$: uniform process
- $\Psi(x)=\mathbf{1}_{x \geq 1}:$ Kakutani process
- $\Psi(x)=x^{k}, k \in \mathbb{N}$: max- k-process (maximum of k intervals)
- $\Psi(x)=1-(1-x)^{k}, k \in \mathbb{N}$: min- k-process (minimum of k intervals)

Main result

$l_{1}^{(n)}, \ldots, I_{n}^{(n)}$: lengths of intervals after step n.

$$
\mu_{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{n \cdot I_{k}^{(n)}}
$$

Main theorem

Assume ψ is continuous + polynomial decay of $1-\Psi(x)$ near $x=1$.
(1) μ_{n} (weakly) converges almost surely as $n \rightarrow \infty$ to a deterministic probability measure μ^{Ψ} on $(0, \infty)$.
(2) Set $F^{\Psi}(x)=\int_{0}^{x} y \mu^{\psi}(d y)$. Then F^{ψ} is C^{1} and

$$
\left(F^{\psi}\right)^{\prime}(x)=x \int_{x}^{\infty} \frac{1}{z} d \Psi\left(F^{\psi}(z)\right)
$$

Properties of limiting distribution

Write $\mu^{\Psi}(d x)=f^{\Psi}(x) d x$.
max-k-process $\left(\Psi(x)=x^{k}\right)$

$$
f^{\Psi}(x) \sim C_{k} \exp (-k x), \quad \text { as } x \rightarrow \infty
$$

min- k-process $\left(\Psi(x)=1-(1-x)^{k}\right)$

$$
f^{\Psi}(x) \sim \frac{c_{k}}{x^{2+\frac{1}{k-1}}}, \quad \text { as } x \rightarrow \infty
$$

convergence to Kakutani (cf. Pyke '80)

If $\left(\Psi_{n}\right)_{n \geq 0}$ s.t. $\Psi_{n}(x) \rightarrow \mathbf{1}_{x \geq 1}$ pointwise, then

$$
f^{\Psi_{n}}(x) \rightarrow \frac{1}{2} \mathbf{1}_{x \in[0,2]}, \quad \text { as } n \rightarrow \infty
$$

Properties of limiting distribution (2)

Proof of main theorem: the stochastic evolution

Embedding in continuous time: points arrive according to Poisson process with rate e^{t}.
N_{t} : number of intervals at time t
$I_{1}^{(t)}, \ldots, I_{N}^{(t)}$: lengths of intervals at time t.
Observable: size-biased distribution function

$$
A_{t}(x)=\sum_{k=1}^{N_{t}} I_{k}^{(t)} \mathbf{1}_{I_{k}^{(t)} \leq x e^{-t}}
$$

Then $\boldsymbol{A}=\left(A_{t}\right)_{t \geq 0}$ satisfies the following stochastic evolution equation:

$$
A_{t}(x)=A_{0}\left(e^{-t} x\right)+\int_{0}^{t}\left(e^{s-t} x\right)^{2}\left[\int_{e^{s-t} x}^{\infty} \frac{1}{z} d \Psi\left(A_{s}(z)\right)\right] d s+M_{t}(x)
$$

for some centered noise M_{t}.
Claim: A_{t} converges almost surely to a deterministic limit as $t \rightarrow \infty$.

Deterministic evolution

Let $\boldsymbol{F}=\left(F_{t}\right)_{t \geq 0}$ be solution of

$$
\begin{aligned}
F_{t}(x) & =F_{0}\left(e^{-t} x\right)+\int_{0}^{t}\left(e^{s-t} x\right)^{2}\left[\int_{e^{s-t_{X}}}^{\infty} \frac{1}{z} d \Psi\left(F_{s}(z)\right)\right] d s \\
& =: \mathscr{S}^{\psi}(\boldsymbol{F})_{t} .
\end{aligned}
$$

Define the following norm:

$$
\|f\|_{x^{-2}}=\int_{0}^{\infty} x^{-2}|f(x)| d x
$$

Lemma

Let \boldsymbol{F} and \boldsymbol{G} be solutions of the above equation. For every $t \geq 0$,

$$
\left\|F_{t}-G_{t}\right\|_{x^{-2}} \leq e^{-t}\left\|F_{0}-G_{0}\right\|_{x^{-2}} .
$$

In particular: $\exists!F^{\Psi}: F_{t} \rightarrow F^{\Psi}$ as $t \rightarrow \infty$.

Stochastic evolution - stochastic approximation

Problem

Cannot control noise M_{t} using the norm $\|\cdot\|_{x^{-2}}$!
\Longrightarrow no quantitative estimates to prove convergence.

Stochastic evolution - stochastic approximation

Problem

Cannot control noise M_{t} using the norm $\|\cdot\|_{x^{-2}}$!
\Longrightarrow no quantitative estimates to prove convergence.
Still possible to prove convergence by Kushner-Clark method for stochastic approximation algorithms.
(1) Shifted evolutions $\boldsymbol{A}^{(n)}=\left(A_{t-n}^{(n)}\right)_{t \in \mathbb{R}}$. Show: almost surely, the family $\left(\boldsymbol{A}^{(n)}\right)_{n \in \mathbb{N}}$ is precompact in a suitable functional space.
(2) Show \mathscr{S}^{Ψ} is continuous in this functional space.
(3) Show $\boldsymbol{A}^{(n)}-\mathscr{S}^{\Psi}\left(\boldsymbol{A}^{(n)}\right) \rightarrow 0$ almost surely as $n \rightarrow \infty$.

This entails that every subsequential limit $\boldsymbol{A}^{(\infty)}$ of $\left(\boldsymbol{A}^{(n)}\right)_{n \in \mathbb{N}}$ is a fixed point of \mathscr{S}^{Ψ}. By previous lemma: $\boldsymbol{A}^{(\infty)} \equiv F^{\Psi}$.

Note: precompactness shown by entropy bounds, already used by Lootgieter '77; Slud '78.

Open problem: empirical distribution of points

$$
-\max -2-\text { uniform }-\min -2
$$

Open problem: empirical distribution of points

