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Related models

Random structures formed by adding objects one after the other
according to some random rule. Examples:

@ balls-and-bins model: n bins, place balls one after the other into
bins, for each ball choose bin uniformly at random (maybe with
size-biasing)

© random graph growth: n vertices, add (uniformly chosen) edges
one after the other.

© interval fragmentation: unit interval [0, 1], add uniformly chosen
points one after the other — fragmentation of the unit interval.

Extensive literature on these models.

PASCAL MAILLARD Choices and Intervals 2/13



Power of choices

Aim: Changing behaviour of model by applying a different rule when
adding objects

@ balls-and-bins model: n bins, at each step choose two bins
uniformly at random and place ball into bin with fewer/more balls.
Azar, Broder, Karlin, Upfal '99; D’'Souza, Krapivsky, Moore '07;
Malyshkin, Paquette '13

© random graph growth: n vertices, at each step uniformly sample
two possible edges to add, choose the one that (say) minimizes
the product of the sizes of the components of its endvertices.
Achlioptas, D'Souza, Spencer '09; Riordan, Warnke '11+'12

@ interval fragmentation: unit interval [0, 1], at each step, uniformly
sample two possible points to add, choose the one that falls into
the larger/smaller fragment determined by the previous points.
— this talk
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Balls-and-bins model

n bins, place n balls one after the other into bins.

@ Model A: For each ball, choose bin uniformly at random.

@ Model B: For each ball, choose two bins uniformly at random and
place ball into bin with more balls.

@ Model C: For each ball, choose two bins uniformly at random and
place ball into bin with fewer balls.

How many balls in bin with largest number of balls?

@ Model A:
@ Model B:
@ Model C:
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Balls-and-bins model

n bins, place n balls one after the other into bins.

@ Model A: For each ball, choose bin uniformly at random.

@ Model B: For each ball, choose two bins uniformly at random and
place ball into bin with more balls.

@ Model C: For each ball, choose two bins uniformly at random and
place ball into bin with fewer balls.

How many balls in bin with largest number of balls?

@ Model A: =~ logn/loglogn
@ Model B:
@ Model C:
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Balls-and-bins model

n bins, place n balls one after the other into bins.

@ Model A: For each ball, choose bin uniformly at random.

@ Model B: For each ball, choose two bins uniformly at random and
place ball into bin with more balls.

@ Model C: For each ball, choose two bins uniformly at random and
place ball into bin with fewer balls.

How many balls in bin with largest number of balls?
@ Model A: =~ logn/loglogn
@ Model B: ~ log n/loglog n
@ Model C:
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Balls-and-bins model

n bins, place n balls one after the other into bins.

@ Model A: For each ball, choose bin uniformly at random.

@ Model B: For each ball, choose two bins uniformly at random and
place ball into bin with more balls.

@ Model C: For each ball, choose two bins uniformly at random and
place ball into bin with fewer balls.

How many balls in bin with largest number of balls?
@ Model A: =~ logn/loglogn
@ Model B: ~ log n/loglog n
@ Model C: O(loglog n)
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WV-process: definition

X: random variable on [0, 1], W(x) = P(X < x).
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WV-process: definition

X: random variable on [0, 1], W(x) = P(X < x).
@ Step 1: empty unit interval [0, 1]
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WV-process: definition

X: random variable on [0, 1], W(x) = P(X < x).

@ Step 1: empty unit interval [0, 1]
© Step n: n— 1 points in interval, splitting it into n fragments
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WV-process: definition

2 1 4 3 order by length 12 3 4

X: random variable on [0, 1], W(x) = P(X < x).

@ Step 1: empty unit interval [0, 1]
© Step n: n— 1 points in interval, splitting it into n fragments
© Stepn+1:

e Order intervals/fragments according to length
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WV-process: definition

2.1. 4 ) 3 . order by length .1 2_ 3 ) 4

l

X: random variable on [0, 1], ¥(x) = P(X < x).
@ Step 1: empty unit interval [0, 1]
© Step n: n— 1 points in interval, splitting it into n fragments
© Stepn+1:

e Order intervals/fragments according to length
e Choose an interval according to (copy of) random variable X
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WV-process: definition

2.1. 4 _3“ order by length .12. 3_ 4

l

X: random variable on [0, 1], W(x) = P(X < x).

@ Step 1: empty unit interval [0, 1]
© Step n: n— 1 points in interval, splitting it into n fragments
© Stepn+1:

e Order intervals/fragments according to length

e Choose an interval according to (copy of) random variable X
e Split this interval at a uniformly chosen point.
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WV-process: definition

X: random variable on [0, 1], W(x) = P(X < x).

@ Step 1: empty unit interval [0, 1]
© Step n: n— 1 points in interval, splitting it into n fragments
© Stepn+1:

e Order intervals/fragments according to length

e Choose an interval according to (copy of) random variable X
e Split this interval at a uniformly chosen point.
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W-process: examples

2 1 4 3 ~ orderbylength 12 3 4

l

X: random variable on [0, 1], W(x) = P(X < x).
@ W(x) = x: uniform process
® V(x) = 14>1: Kakutani process
@ V(x) = xk, k € N: max-k-process (maximum of k intervals)

@ V(x) =1—(1—x)X, k € N: min-k-process (minimum of k
intervals)
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Main result

£ ) lengths of intervals after step .

10
“n Zdn-ll((")
k=1

Main theorem
Assume V is continuous + polynomial decay of 1 — W(x) near x = 1.

@ . (weakly) converges almost surely as n — oo to a deterministic
probability measure 1V on (0, o).

Q Set FY(x) = [y yu¥(dy). Then F¥ is C' and

(FY0)=x [ "L awri)).
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Properties of limiting distribution
Write .Y (dx) = ¥ (x) dx.

X
¥ (x) ~ Ci exp(—kx),

as X — oo.

If (Wn)n>o S.t. Wn(x) = 14>1 pointwise, then

\ 4
frr(x) — §1X€[072], as n — oo.
PASCAL MAILLARD
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Properties of limiting distribution (2)
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Proof of main theorem: the stochastic evolution

Embedding in continuous time: points arrive according to Poisson
process with rate e!.

N;: number of intervals at time ¢

l1(t), R I,(\Z): lengths of intervals at time t.

Observable: size-biased distribution function

Ni
t
AC) =3 M0
k=1

Then A = (A)t>0 satisfies the following stochastic evolution equation:

A() = ole )+ [ (e txp? [ L 38vAs2)| o5 + M),

for some centered noise M;.
Claim: A; converges almost surely to a deterministic limit as t — oo.
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Deterministic evolution

Let F = (Ft)t>0 be solution of

t
Fi(x) = Fo(e_tX) +/O (es_tX)2 |:/
= yw(F)t

o0

N ld\U(Fs(z))} ds

Define the following norm:

fle = [ X300 o

Lemma
Let F and G be solutions of the above equation. For every t > 0,

IFt = Gilly—= < €' | Fo — Gollx—= -

In particular: 3'FY : F; — FY as t — oc.
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Stochastic evolution - stochastic approximation

Cannot control noise M; using the norm |||, 2!

— no quantitative estimates to prove convergence.
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Stochastic evolution - stochastic approximation

Cannot control noise M; using the norm |||, 2!
— no quantitative estimates to prove convergence.

Still possible to prove convergence by Kushner—Clark method for
stochastic approximation algorithms.
@ Shifted evolutions A" = (A" ). Show: almost surely, the
family (A(),cy is precompact in a suitable functional space.
@ Show .7V is continuous in this functional space.
@ Show A — #Y(AM) — 0 almost surely as n — co.

This entails that every subsequential limit A©) of (A(M),y is a fixed
point of .#V. By previous lemma: A(®) = FV,

Note: precompactness shown by entropy bounds, already used by
Lootgieter '77; Slud '78.
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Open problem: empirical distribution of points
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Open problem: empirical distribution of points
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