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Related models

Random structures formed by adding objects one after the other
according to some random rule. Examples:

1 balls-and-bins model: n bins, place balls one after the other into
bins, for each ball choose bin uniformly at random (maybe with
size-biasing)

2 random graph growth: n vertices, add (uniformly chosen) edges
one after the other.

3 interval fragmentation: unit interval [0,1], add uniformly chosen
points one after the other→ fragmentation of the unit interval.

Extensive literature on these models.
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Power of choices

Aim: Changing behaviour of model by applying a different rule when
adding objects

1 balls-and-bins model: n bins, at each step choose two bins
uniformly at random and place ball into bin with fewer/more balls.
Azar, Broder, Karlin, Upfal ’99; D’Souza, Krapivsky, Moore ’07;
Malyshkin, Paquette ’13

2 random graph growth: n vertices, at each step uniformly sample
two possible edges to add, choose the one that (say) minimizes
the product of the sizes of the components of its endvertices.
Achlioptas, D’Souza, Spencer ’09; Riordan, Warnke ’11+’12

3 interval fragmentation: unit interval [0,1], at each step, uniformly
sample two possible points to add, choose the one that falls into
the larger/smaller fragment determined by the previous points.
→ this talk
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Balls-and-bins model

n bins, place n balls one after the other into bins.

Model A: For each ball, choose bin uniformly at random.
Model B: For each ball, choose two bins uniformly at random and
place ball into bin with more balls.
Model C: For each ball, choose two bins uniformly at random and
place ball into bin with fewer balls.

How many balls in bin with largest number of balls?

Model A:

≈ log n/ log log n

Model B:

≈ log n/ log log n

Model C:

O(log log n)
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Ψ-process: definition

X : random variable on [0,1], Ψ(x) = P(X ≤ x).

1 Step 1: empty unit interval [0,1]

2 Step n: n − 1 points in interval, splitting it into n fragments
3 Step n + 1:

Order intervals/fragments according to length
Choose an interval according to (copy of) random variable X
Split this interval at a uniformly chosen point.
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Ψ-process: examples

12 34 1 2 3 4

X

order by length

X : random variable on [0,1], Ψ(x) = P(X ≤ x).

Ψ(x) = x : uniform process
Ψ(x) = 1x≥1: Kakutani process
Ψ(x) = xk , k ∈ N: max-k -process (maximum of k intervals)
Ψ(x) = 1− (1− x)k , k ∈ N: min-k -process (minimum of k
intervals)
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Main result

I(n)
1 , . . . , I(n)

n : lengths of intervals after step n.

µn =
1
n

n∑
k=1

δ
n·I(n)

k

Main theorem
Assume Ψ is continuous + polynomial decay of 1−Ψ(x) near x = 1.

1 µn (weakly) converges almost surely as n→∞ to a deterministic
probability measure µΨ on (0,∞).

2 Set F Ψ(x) =
∫ x

0 y µΨ(dy). Then F Ψ is C1 and

(F Ψ)′(x) = x
∫ ∞

x

1
z

dΨ(F Ψ(z)).
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Properties of limiting distribution

Write µΨ(dx) = f Ψ(x) dx .

max-k -process (Ψ(x) = xk )

f Ψ(x) ∼ Ck exp(−kx), as x →∞.

min-k -process (Ψ(x) = 1− (1− x)k )

f Ψ(x) ∼ ck

x2+ 1
k−1

, as x →∞.

convergence to Kakutani (cf. Pyke ’80)

If (Ψn)n≥0 s.t. Ψn(x)→ 1x≥1 pointwise, then

f Ψn (x)→ 1
2

1x∈[0,2], as n→∞.
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Properties of limiting distribution (2)
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Proof of main theorem: the stochastic evolution

Embedding in continuous time: points arrive according to Poisson
process with rate et .
Nt : number of intervals at time t
I(t)
1 , . . . , I(t)

Nt
: lengths of intervals at time t .

Observable: size-biased distribution function

At (x) =

Nt∑
k=1

I(t)
k 1

I(t)
k ≤xe−t

Then A = (At )t≥0 satisfies the following stochastic evolution equation:

At (x) = A0(e−tx) +

∫ t

0
(es−tx)2

[∫ ∞
es−t x

1
z

dΨ(As(z))

]
ds + Mt (x),

for some centered noise Mt .
Claim: At converges almost surely to a deterministic limit as t →∞.
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Deterministic evolution

Let F = (Ft )t≥0 be solution of

Ft (x) = F0(e−tx) +

∫ t

0
(es−tx)2

[∫ ∞
es−t x

1
z

dΨ(Fs(z))

]
ds

=: S Ψ(F )t .

Define the following norm:

‖f‖x−2 =

∫ ∞
0

x−2|f (x)|dx .

Lemma
Let F and G be solutions of the above equation. For every t ≥ 0,

‖Ft −Gt‖x−2 ≤ e−t ‖F0 −G0‖x−2 .

In particular: ∃!F Ψ : Ft → F Ψ as t →∞.
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Stochastic evolution - stochastic approximation

Problem
Cannot control noise Mt using the norm ‖·‖x−2 !

=⇒ no quantitative estimates to prove convergence.

Still possible to prove convergence by Kushner–Clark method for
stochastic approximation algorithms.

1 Shifted evolutions A(n) = (A(n)
t−n)t∈R. Show: almost surely, the

family (A(n))n∈N is precompact in a suitable functional space.
2 Show S Ψ is continuous in this functional space.
3 Show A(n) −S Ψ(A(n))→ 0 almost surely as n→∞.

This entails that every subsequential limit A(∞) of (A(n))n∈N is a fixed
point of S Ψ. By previous lemma: A(∞) ≡ F Ψ.

Note: precompactness shown by entropy bounds, already used by
Lootgieter ’77; Slud ’78.
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Open problem: empirical distribution of points
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Thank you for your attention!


